Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 353: 141516, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387654

RESUMO

The presence of micro/nanoplastics (MPs/NPs) in sewage sludge has sparked considerable apprehensions over their potential negative effects on anaerobic digestion (AD) performance. The occurrence of MPs/NPs can trigger oxidative stress on the anaerobic microbiome, leading to potential inhibition of the AD process. While the thermal hydrolysis process (THP) is an extensively utilized sludge pretreatment method for AD, its impact on stress induced by MPs/NPs during AD remains poorly understood. In this study, we assessed the impacts of low-temperature THP (90 °C, 90 min) on AD of sewage sludge in the presence of 150 µg/L of polystyrene nanoplastics (PsNPs) under different solid retention times (SRTs) of 20, 15, and 10 d. The presence of PsNPs resulted in a higher reactive oxygen species (ROS) production and a higher abundance of antibiotic resistance genes (ARGs). Additionally, their presence caused a significant inhibition of methane production by 28.2%, 29.3%, and 38.8% for SRTs of 20, 15, and 10 d, respectively. Introducing low-temperature THP prior to the AD could partially recover methane production by mitigating ROS-induced stress and curbing the propagation of ARGs during the AD process. These results shed light on the potential benefits of THP and further optimization opportunities in alleviating the adverse effects of MPs/NPs-induced stress during sewage sludge AD.


Assuntos
Poliestirenos , Esgotos , Anaerobiose , Microplásticos/toxicidade , Temperatura , Hidrólise , Espécies Reativas de Oxigênio , Metano , Estresse Oxidativo
2.
Sci Total Environ ; 903: 166082, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37544438

RESUMO

Microbial electrochemical technologies are promising for simultaneous energy recovery and wastewater treatment. Although the inhibitory effects of emerging pollutants, particularly micro/nanoplastics (MPs/NPs), on conventional wastewater systems have been extensively studied, the current understanding of their impact on microbial electrochemical systems is still quite limited. Microplastics are plastic particles ranging from 1 µm to 5 mm. However, nanoplastics are smaller plastic particles ranging from 1 to 100 nm. Due to their smaller size and greater surface area, they can penetrate deeper into biofilm structures and cell membranes, potentially disrupting their integrity and leading to changes in biofilm composition and function. This study first reports the impact of polystyrene nanoplastics (PsNPs) on syntrophic anode microbial communities in a microbial electrolysis cell. Low concentrations of PsNPs (50 and 250 µg/L) had a minimal impact on current density and hydrogen production. However, 500 µg/L of PsNPs decreased the maximum current density and specific hydrogen production rate by ∼43 % and ∼48 %, respectively. Exposure to PsNPs increased extracellular polymeric substance (EPS) levels, with a higher ratio of carbohydrates to proteins, suggesting a potential defense mechanism through EPS secretion. The downregulation of genes associated with extracellular electron transfer was observed at 500 µg/L of PsNPs. Furthermore, the detrimental impact of 500 µg/L PsNPs on the microbiome was evident from the decrease in 16S rRNA gene copies, microbial diversity, richness, and relative abundances of key electroactive and fermentative bacteria. For the first time, this study presents the inhibitory threshold of any NPs on syntrophic electroactive biofilms within a microbial electrochemical system.

3.
Sci Total Environ ; 855: 158847, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36126703

RESUMO

Thermal hydrolysis of sludge is a promising approach to mitigate antibiotic resistance genes (ARGs) propagation in anaerobic digestion (AD). Although ARGs in sludge may be fractioned into intracellular, extracellular polymeric substance (EPS)-associated, and cell-free ARGs, the fate of these different fractions in AD has never been investigated. This study presents a detailed characterization of intracellular and extracellular ARGs in AD of sludge thermally hydrolyzed at 90 °C and 140 °C. EPS-associated ARGs represented the major fraction of the total extracellular ARGs in all samples, while its lowest abundance was observed for thermal hydrolysis at 140 °C along with the lowest EPS levels. The results suggested a positive correlation between EPS-associated ARGs with intracellular and cell-free ARGs. Furthermore, various EPS components, such as proteins and e-DNA, were positively correlated with ß-lactam resistance genes. sul1 dominated all samples as an EPS-associated resistance gene. These results provide new insights into the significance of different ARGs fractions in their overall dissemination in AD integrated with thermal hydrolysis.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Esgotos , Antibacterianos/farmacologia , Anaerobiose , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética
4.
Sci Rep ; 12(1): 6749, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468927

RESUMO

The positive impact of the thermal hydrolysis process (THP) of sewage sludge on antibiotic resistance genes (ARGs) removal during anaerobic digestion (AD) has been reported in the literature. However, little information is available on how changes in different extracellular polymeric substances (EPS) due to THP can influence ARG propagation during AD. This study focused on systematically correlating EPS components and ARG abundance in AD of sewage sludge pretreated with THP (80 °C, 110 °C, 140 °C, 170 °C). THP under different conditions improved sludge solubilization followed by improved methane yields in the biochemical methane potential (BMP) test. The highest methane yield of 275 ± 11.5 ml CH4/g COD was observed for THP-140 °C, which was 40.5 ± 2.5% higher than the control. Increasing THP operating temperatures showed a non-linear response of ARG propagation in AD due to the rebound effect. The highest ARGs removal in AD was achieved with THP at 140 °C. The multivariate analysis showed that EPS polysaccharides positively correlated with most ARGs and integrons, except for macrolides resistance genes. In contrast, EPS protein was only strongly correlated with ß-lactam resistance genes. These results suggest that manipulating THP operating conditions targeting specific EPS components will be critical to effectively mitigating the dissemination of particular ARG types in AD.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Esgotos , Anaerobiose , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Matriz Extracelular de Substâncias Poliméricas/genética , Metano
5.
Data Brief ; 38: 107323, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34522731

RESUMO

Here, we report data of the principal component analysis (PCA) assessment and clustering analysis related to low-temperature thermal hydrolysis process (THP) for enhancing the anaerobic digestion (AD) of sludge in wastewater treatment plants (WWTPs) with primary sludge fermentation (Azizi et al., 2021). The PCA was examined to pinpoint the influence of different THP schemes on the variations of macromolecular compounds solubilization after low-temperature THP and the relative performances in enhancing methane potential in AD. We established 2 experimental setups with a total of 18 treatment conditions (3 exposure times, 30, 60, and 90 min at three temperature levels 50, 70 and 90 °C) in comparison to the untreated control samples. Scheme-1 comprises the THP of a mixture of (1:1 vol ratio) fermented primary sludge (FPS) and thickened waste activated sludge (TWAS); while scheme-2 comprised the THP of TWAS only. The factors employed in the assessment of the PCA encompassed the variations in the macromolecular compounds and other solubilization metrics. This included the variations in the levels of carbohydrates, lipids, proteins, and solubilization of chemical oxygen demand (COD) and volatile suspended solids (VSS). Furthermore, the evaluation considered the changes of volatile fatty acids (VFAs) and total ammonia nitrogen (TAN) with respect to time and temperature. The assessment of PCA classified the THP based on their differences and alterations that occurred after the treatment. The indices of the PCA assessments differed based on the factors of concern and the focus of each individual PCA assessment. In every individual PCA assessment, the respective contribution to the total variance in PCA analysis was calculated and manifested by the highest distribution of the principal components (PCs) axis PC1 and PC2. The differences in distributions of PCs after various PCA examinations can describe the relative influence of THP schemes and the most significant variables that can trigger major differences among THP conditions. The comparative differences demonstrated by PCA support the potential investigations of the efficiency of THPs conditions and their performance categories.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...